If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+10d-24=0
a = 1; b = 10; c = -24;
Δ = b2-4ac
Δ = 102-4·1·(-24)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*1}=\frac{-24}{2} =-12 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*1}=\frac{4}{2} =2 $
| 8=h+h | | d-3+ 1= 2 | | -3(x+9)=-44 | | 3x/2-2=19 | | 30-2r=-2(r=6)-6r | | 3x^2+x+15=0 | | 2x-5(x-5)=-2+4x-1 | | 33+3a=3(4+8a) | | (1/5)-(2y/15)=17 | | Y=x2-7x+10 | | z+242=-346 | | -2+8(3n+8)=2+4n | | 10/j=35 | | 6z+5=12=5z-2 | | 7(1-4v)=-14-7v | | 12=3k+9k | | 7(3a-3)=-8a+8 | | 10/t=10/11 | | (x+9)^2=49 | | 6u=-792 | | 64x²-1=0 | | 1+18k+20k=13k+18k-13 | | 0=6y-3y | | 12x^2-180=0 | | 2x+4x+16=34 | | -25-6a=6(8-3a)-1 | | x²-81/4=0 | | 2=2g–4 | | 2x²+8x-10=0 | | (19-2x)(35-2x)=0 | | 165=f-5 | | 0=p+p |